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Abstract -A new method is presented for the solution of mass transport Stefan problems in one dimension 
and in semi-infinite regions. It relies on expansions of the concentration distribution and growth rate in 
powers oft”‘. Field conditions at the moving boundary are not necessarily constant; they can be arbitrary. 
Such conditions often lead to non-similar solutions. Although these problems are nonlinear, the expansion 
coefficients satisfy linear recurrence relations. These coefficients result from simple algebraic manipulations 
of functions closely related to the iterated error functions. The method is applied to several examples of 
crystal growth from supersaturated solutions. The first two examples assume isothermal conditions; they 
illustrate the difference between surface equilibrium and finite surface kinetics. The third example 

demonstrates effects due to homogeneous cooling. 

NOMENCLATURE Subscripts 

cooling rate; 
molar concentration ; 
diffusion coefficient ; 
growth rate (surface velocity); 
inhomogeneous term of equation (2.12); 
Green’s function, equation (2.24); 

e, equilibrium value; 

k, m, n, integer indices; 

s, value for the solid ; 
P, v> arbitrary indices; 

‘;o, far field value. 

* 
= 

s 
dty(t’), surface position ; 

0 

reaction constant ; 
liquidus slope; 
time ; 
normalized concentration (2.6); 
generalized iterated error functions, 
equations (2.19) and (A.9); 

= u(<,O), normalized surface 
concentration; 
wronskian ; 
mole fraction; 
initial value of x,(t); 
= q + &, argument of general solution 
(2.23); 
distance from moving surface. 

THE GROWTH of defect-free single crystals of carefully 
controlled composition is a prerequisite for successful 
device fabrication. Indeed, it is the backbone of the 
semiconductor industry. Its applications include all of 
planar silicon device technology, magnetic garnet 
bubble memories, high efficiency GaAs solar cells, and 
III-V compound heterostructure lasers, to name a few. 

Calculations of crystal growth kinetics require, by 
their very nature, the solution of transport equations 
together with the motion of the phase front, i.e. the 
crystal-fluid surface. Thus, they are Stefan problems 
akin to those that arise, for example, during freezing, 
ablation, casting, and geophysical processes. The 
literature pertaining to such questions is truly im- 
mense. A recent survey [l] lists more than 3000 
references, and several books and reviews [2-51 deal 
with the theory and applications of Stefan problems. 
Although recent efforts have emphasized numerical 
techniques, particularly for multidimensional pro- 
blems [6-81, much practical information may be 
gleaned from analytic procedures. Among these are 
expansions for small [9-lo] and large [l l] values of 
time. 

Greek symbols 

similarity variable (2.5); 
function (2.6) that describes growth rate; 
strength of cooling (5.5); 
proportional to t’lz ; 
supersaturation ratio (x, - x,)/(x, - 

x,) ; 
relaxation time for cooling; 
3 - &(I& O)/& surface gradient. 

* Partial results were presented at the Fourth American 
Conference on Crystal Growth, National Bureau of Stan- 
dards, Gaithersberg, Maryland (16-19 July 1978). 

1. INTRODUCTION 

Problems of crystal growth, and more generally of 
mass transport, differ from typical thermal problems in 
the boundary conditions at the moving surface and in 
its equation of motion. Thus, while temperature is 
continuous across this surface and is anchored there at 
the melting point, the concentration distribution is 
discontinuous and its values there may be given or, a 
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priori, unknown functions of time. In addition, mass 
conservation requires that one multiply the surface 

velocity by the concentration jump; for thermal 
problems. only the latent heat is a multiplicative factor 
of this velocity. The differences between these two 

classes of problems is clearly seen if one compares the 

methodology and examples in Tao’s excellent recent 

paper [12] with the results of this work. Although Tao 
allows for arbitrary initial conditions and arbitrary 

boundary conditions at the fixed boundaries, he 
assumes constancy of the temperature field at the 
moving surface. Here, in keeping with the complex 

chemical physics of growth and dissolution. the con- 

ditions at the moring surface are arbitrary. 
This paper deals with small time expansions for 

Stefan problems of mass transport in semi-infinite 

regions that admit planar moving phase fronts. The 

method differs from earlier cited efforts that take 
advantage of transform techniques or of the reduction 
to integral equations. It more closely resembles 

Miiller-Krumbhaar’s technique [13], a perturbation 
series in inverse powers of the solid’s concentration. 

However. many problems of crystal growth, such as 

the question of impurity redistribution, do not fit this 

scheme because there is no standard constant con- 

centration that can serve as an expansion parameter. lt 

also resembles the remarkable recent results of Boley 
[14], although this author dealt mainly with a sim- 

plified model of impurity redistribution caused by a 
thermal driving force. The origin of the present method 

rests on provocative remarks by Hartree [IS]. Crank 

[ 161, and Cohen [ 171, although a large portion of this 

paper was complete before the author became ac- 
quainted with their contents. One first derives a 
hierarchy of coupled ordinary differential equations in 

a similarity variable. Each can then be solved in closed 
form so that the solution is analytically representable. 
in principle, to all orders. Expansions of this type are 

sometimes accurate representations of a practical 
process, such as in liquid phase epitaxy, when the time 

constant of the system is larger than the processing 
time. Such expansions always allow one to step away 
from ubiquitous initial singularities. and are thus 

starting solutions for finite difference schemes. The 
next section derives the general formalism and the 
following ones deal with particular examples of in- 
terest for the theory and practice of crystal growth. 

2. TRANSPORT EQU-lTlONS AND THEIR SOLUTIOK 

Let h(t) be the position of the planar phase front in a 
laboratory frame (z’). The nutrient phase* occupies the 

half-space 2’ > h, the growing or dissolving solid 

occupies the half-space Z’ < h. Thus, one deals with 
one-dimensional transport and motion ; these models 
approximately describe many methods of crystal 
growth such as liquid phase epitaxy, and the 
Czochralski and float zone techniques. Again, one 

* This phase can be liquid, gaseous, or solid; to be definite 
it will be called a fluid. 

limits consideration to binary difYusion in the flutd. no 
diffusion in the solid or on the surface. no reactions in 
either bulk phase, and the assumption ofconstant torai 
molar concentrations C and C, in the fluid and solid. 
respectively. It is easy to lift some of these restrictions. 
such as in recent calculations [IX-j that consider 
multicomponent diffusion in both bulk phase>. 

Under the foregoing assumpttons one dericcs the 
transport equation for the mole fractions Y/Z. f i and .x, 
of either species in the fluid and slid, rei;pecti\el) 

Here, following many authors, one has transformed to 
aframe: = 2’ - h that moves with the surface ; 1 E. k IS 
its velocity (the growth rate). and I) is the diffusion 
coefficient in the fluid. In addition the surf:tce’s 

equation of motion is 

I f’C,,:C’)(s, u) = n i.1 1-z. _ ~-- !b 12.31 

and the initial and far field conditions are assumed 
uniform : 

s(z,o)=.Y~-/.t)- <, iJ.4) 

The factor C,/C in equations (2. I ) and (2.3) stems from 

unequal fluid and solid densities (cf. [IX] [19] pp. 
290~ 291). The system of equations (2.1 4) for the 
unknown functions X(Z, t) and,/‘(t) is as yet mcomplete. 

for one has expressed nothing but mass conservation. 

Each specific problem will depend on an additional 

boundary condition that expresses the chemical phy- 
sics of molecular exchanges at the moving surface. The 
formalism that follows is independent of such a 

condition. 

First, transform equations (2.! 4) through the 
introduction of new independent variables 

5 = t’ 2. r/ = Z ‘(I)()’ .‘. (2.51 

and of new unknown functions 

u((, z) = 0. ; > 0 I?,.)0 

1-u 
- -~ = 2E.( I + uj. 

??I 

rj = 0. 1~7.9) 

Then, note that equation (2.7) is homogeneous in <. IX. 
it is invariant under arbitrary choices of the time scale. 
and that its form suggests an expansion in powers of 
[[lo. 12, 14-173. Accordingly, assume the following 
expansions 
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n=O n=O 

and insert these into equations (2.7-9) to get 

u; + 2(?) + do)& = 0, (2.11) 

n-l 
u.” + 2(r] + 1,)~; - 2nu, = - 2 C I2._& n 2 1, 

k=O 

(2.12) 

u,(co) = 0, Vn, (2.13) 

cpo = 210(1 + “o), (2.14) 

n-1 

in which the convenient abbreviations 

u, = u”(O), cp” = -u;(o) (2.16) 

stand for the surface values and gradients of the 
coefficients u,. 

Proceeding to the solution of this coupled system 
(2.11-16) one notes first that the zeroth order cor- 
responds exactly to Neumann’s solution (cf. chapter 
XI of [ 191). Indeed the solution of equations (2.11) and 
(2.13) is 

u,(v) = “0 
erfc(fj + a,) 

erfc(1,) ’ 
(2.17) 

which inserted into equation (2.14) yields 

“,/(I + uo) = &a,exp(l$erfc(l,), (2.18) 

i.e. a condition for the determination of the constant a0 
should one know uo. Equation (2.18) has a unique real 
solution for any value of the supersaturation ratio tr = 
“,/(l + uO) less than unity. This imposes the physical 
restriction u0 > - 1. 

General solutions of the higher order equations are 
easily obtained, for the iterated error functions satisfy 
the left hand side of equations (2.12). Appendix A lists 
some properties of these and related functions. In 
addition, one notes that all solutions must depend only 
on the argument Y z q + 1,. For example, one can 
choose* the basis functions 

U,( f Y) = i” erfc( f Y). (2.19) 

By standard techniques (cf. Appendix B) one shows 
that their wronskian has the form 

WJ,(Y), U,(-Y)I = w, w-$-y’), (2.20) 

where I+‘,, its value at y = 0, is given by 

W, = (& 2”-‘n!)-‘, (2.21) 

and thus the functions (2.19) are linearly independent. 
If one assumes that the gradient rp, and (minus) the 
right hand side of equation (2.12), i.e. 

* By suitable transformations other basis functions (para- 
bolic cylindrical, Hermite, or confluent hypergeometrical) are 
equally acceptable. However, the iterated error functions are 
more familiar in diffusion theory [19]. 

(2.22) 

are known, then one easily derives the representation 

U”(Y) 
U”(Y) = (Pn- 

u,-,(a,) + s 
m dsM)exp(s*)G,(Y(s) 

L0 
(2.23) 

valid for n 2 1. Here the Green’s function 

,&(Y)[W-s) + 

I 
u,-,(-a,) 
u,- ,(a,) 

U,(S)], 1, 5 s < Y, 

Gn(~l4 = K’ (2.24) 

U,(s)CU,(-Y) + 

u,-,(-a,) 

u,- ,(a,) 
U”(Y)], s > Y 2 a,, 

is expressed in terms of the basis functions (2.19) and 
the reduced argument y = rl + 1,. Using equation 
(2.20) one evaluates G, at the surface (y = 1,); this 
leads to a representation of the surface value 

“, = r u,- ,(a,)] - 1 bwn~~o~ 

s 

cc 
+ exp(-ai) dsg,(s)exp(sW,(s)l. (2.25) 

ia 

In view of equation (2.22) formulas (2.23) and (2.25) 
constitute recursion sequences whose zeroth term is 
simply Neumann’s solution (2.17-18). Once the 
coefficients 1, have been computed, the surface’s 
schedule h(t) follows by integrating equation (2.6) with 
equation (2.10). These formulas are applied to specific 
examples in the next three sections. 

3. CONSTANT SURFACE CONCENTRATION 

Assume that the mole fraction x is pinned to its 
equilibrium value x, at the surface for all values of 
time. This is the mass transport analog of melting and 
freezing problems. Then 

“0 = @Cc - x,)/(x, - x,) = a,, (3.1) 

u,=O, n21. (3.2) 

One must now prove that the expansions (2.10) are 
consistent with known results, namely that all II, and an 
vanish identically except the zeroth terms, equations 
(2.17-18), that correspond to Neumann’s solution. 

To begin, examine the first order. Using equation 
(2.17) one gets the inhomogeneous term (2.22) 

g,(Y) = 2a,t4; = - 4u,a,n-~‘~exp(-yz)/uo(ao). 

(3.3) 

If one inserts this expression into equation (2.25), then 
formula (A. 1) allows evaluation of the integral, and the 
condition vi = 0 leads to 

Application of the formula (2.15) for n = 1 then yields 
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‘p, - (1 + u,)Zi, = 0. (3.5) 

Therefore, equations (3.4-5) form a linear homo- 
geneous system in (cpl, 23.i). A general argument for the 
regularity of this system follows shortly. Thus 50, = A1 
= 0, and, according to equation (2.23), u1 = 0 since it 
is a linear combination of these quantities. 

Now one proceeds by induction. Assume u1 = u2 = 
. = u, _ i = 0 {therefore the related quantities r and 

q also vanish), and i, = i,, = I . .I,_ i = 0. Then, as in 
the case n = 1, one readily gets 

(P” - (1 + r&)2& = 0, (3.7) 

a homogeneous system for (q,, 2i,) whose determinant 
is 

A, = - (1 + u,)[2(n + 2)v,+,(n,)/U,(~,)].(3.8) 

Here, one has used the condition (2.18) that 1, must 
satisfy and the recurrence relation (A.3). The first 
factor of equation (3.8) cannot vanish since u, > - t is 
necessary and sufficient for obtaining physical so- 
lutions of equation (2.18). Neither does the second 
factor ever vanish since the iterated error functions are 
analytic and have no zero on the finite real axis. 
Therefore, (P” = J.” = 0, and, as before, u, za 0. Finally, 
the determinant A, of the system (3.4-5) also never 
vanishes because it too has the form (3.81, and the 
proof is complete. 

In summary, the expansions (2.10) reduce to 
Neumann’s solution when the surface concentration is 
constant. The same holds true for multicomponent 
diffusion including thermal effects due to latent heat, as 
long as the surface concentrations are at equilibrium 
and are given by the appropriate phase diagram. In 
particuiar, Neumann’s soiution is valid for impurity 
redistribution as long as the system can be considered 
unbounded and is not subject to time dependent 
external driving forces such as cooling or electrical 
stressing programs. 

4. THE EFFECT OF SURFACE KINETICS 

There exist problems of mass transport where the 
surface concentration deviates from its equilibrium 
value x,. This arises because growth and dissolution 
involve surface processes such as nucleation, adsorp 
tion, surface diffusion and kink incorporation 
[20,21]. The same holds true for electrode processes 
1223. Then, one cannot expect constancy of the surface 
concentration. The simplest model for surface rate 
limitations can be expressed through 

D(l?.@z) = K(x - X& z = 0, (4.1) 

a boundary condition that mimics Newton’s Law of 
Cooling. In words, the flux at the surface must balance 
exactly a first order heterogeneous reaction, the 
coefficient K being a reaction constant. For example, 
such a model accurately predicts the growth of garnets 

by liquid phase epitaxy [23,24]. Here, the surface 
concentration is unknown, a priori. Returning to a 
remark that followed equation (2.9), one notes that 
D/K2 can serve as a unit of time. Since 11 = z/2(Dt)’ ‘2 is 
dimensionless, D/K must then be the distance unit. 
Thus. one writes 

: = (tK’/D)“‘, j”(5) = (C$CK)<. (4.21 

and the additionai boundary condition (4.1) becomes 

-au& = 25(u, -- U). ‘1 = 0 (4.3) 

in the reduced variables (<, ‘1, u); equation (3.1) defines 
u,. When expressed in terms of the expansion (2.10) 
and the auxiliary quantities (2.16), equation (4.3) then 
yields the relations 

(PO = 0, (4.4) 

‘pi = 2(a, -- t’,,L (4.51 

(Pn= -2r,-,. r1>2. (4.6) 

Proceeding to the computation of the coefficients of 
expansions (2.10), one first remarks that relation (4.4), 
when combined with equation (2.14), yields & = 0 
because r0 > -I as has been noted before. Then 
equations (2.t8) and (2.17) give co = 0 and 14~ = 0. 
respectively. Thus, the zeroth order vanishes identi- 
cally. In particular, i, = 0 implies that the growth rate 
(4.2) is non-singular at the origin; this is precisely the 
effect of surface rate limitations. 

The first order is equally simple. Equations (4.5 I and 
(2.15) immediately yield cp, = 2u, and i., =z II,.. 
Furthermore, since the inhomogeneous term yi van- 
ishes identically, the representation (2.23) reduces to 
ui(n) = 2u,U,(g), and the use of equation (A.131 
implies vi = 2x- ’ %,. 

This computational pattern (cp,. L,. a,, c,J is con- 

served for the higher order terms because fp, and i., do 
not depend on G’,. Therefore, equation (2.25) is super- 
fluous. To illustrate again with the next order, equa- 
tion (4.6) yields immediately cpz = -4n- 1’2t4,, and 
equation (2.15) can then be solved for A2 to give iL, = 
-2~-‘!~u, (1 + 12,). Now yz = 2i.,u’, isnon-zero,and 
use of equation (A. 10) and the above results permit its 
evaluation, namely g;?(q) = - (2u,)‘U0(~). Then, equa- 
tion (B.4) applied to the case m = 0, n = 2, together 
with formulas (A.13), allow one to reckon the terms of 
equation (2.23) to get u,(q) = --u,{4U,(q) + zlp[U,,(~) 
- 2U,(q)]j, hence the surface value c2 = -u, (I t 
~‘2). One notes that terms of order higher than two 
involve U-functions of negative index, as is clear from 
the derivative of u2 that enters the inhomogeneous 
term g3. Thus, in general, the nth coefficient u.(n) is a 
linear combination of U-functions of positive index 
not greater than n (iterated error functions) and of 
negative index greater than - n + 1 (exponentials that 
multiply Hermite polynomials). Similar rules apply to 
each specific problem depending on the order of the 
first non-zero coefficients (u,, &). Collecting the above 
terms one can express the expansions (2.10) in the form 
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u(i;, r1vm4, = U,(v) - wJ,(q) 
+ U,[@,(?) + U,(n)]}5 + . . *> (4.7) 

CJ-(C)/C& = 1 - 2x- “‘(1 + a,)5 + * - 1. (4.8) 
It is interesting to compare these expressions with 

+3 = u, f /4*. (5.3) 

Here, the normalized surface concentration u results 
from two distinct driving forces, the initial 
supersaturation 

approximate ones used for the analysis of crystal 
growth kinetics. There, one often makes the following 
two adoptions: (1) The surface moves slowly with 
respect to the concentration profiles; (2) The con- 
centration at the surface is much less than x, the solid’s 
concentration. In the present case one finds [23] 

u, = (x, - x0)/(x, - x,), (5.4) 

in accordance with defini~on (3.1), and cooling ptjz 
whose “strength” is 

~(5, vl)la, = erfc(?) 

- exp(-$)exp(q + 5)’ erf+ + 0, (4.9) 

C,JFK)ICK = ctx, - x,)/x,lexp(r2)erfc(51 
(4.10) 

If one expands these formulas in powers of {, then one 
gets 

U(Lrl)/2t;% = U*(tl) - 2<U,(rl) + . . *> (4.11) 

C,f(0/CK = L-xm - x,)/x,] [ 1 - 2n - “24 -I- * . j. 
(4.12) 

P = x0/(x, - x,). (5.5) 

From equations (5.3) it follows that so = u,, u1 = 0, vZ 
= p, and v, = 0 for n > 2. Although the driving forces 
appear additively in the boundary condition (5.3) this 
example illustrates interferences in their effects, as the 
final part of this section will show. 

Computations are now carried out to second order ; 
higher order estimates are meaningless unless equa- 
tion (5.1) remains an accurate description of surface 
behavior for large values of time. Since v. = u, and u1 
= 0, the zeroth and first order coefficients duplicate 
those in Section 3, namely 

Indeed, equations (4.7) and (4.11) are comparable 
when the concentration ratio u, = (x, - x,)/(x, - 
x,) is much less than unity. The same holds true for 
equations (4.8) and (4.12), with the additional proviso 
x, >> x, that stems from the second ~sumption 
preceding equation (4.9). 

5. THE EFFECT OF COOLlNG RATE 

In addition to the effect of supersaturation, the 
action of external forces can also cause crystal growth. 
Among these, homogeneous cooling of the entire 
system is widely used to promote accretion of matter 
on nucleation sites. If surface processes are fast, then 
the surface con~ntration x(O,t) must be close to 
eq~librium. But x,, the equilibrium value, depends on 
temperature, which in turn depends on the cooling 
program. Thus, contrary to the last example, the 
surface concentration is a known function of time. One 
can easily show [25,26] that the surface concentration 
obeys 

uo(rl) = &Uo(? + ~O)lU&)l (5.6) 

Ml + u,) = $1, exp(G)Uo(&), (5.7) 

1, = u,(fj) = 0. (5.8) 

These terms are inde~ndent of the cooling rate. The 
second order, and possible higher ones, set the follow- 
ing computational pattern : Solve a linear system for rp, 
and &, then obtain u,. Explicitly, equation (2.15) yields 

CPZ - 212(1 + ue) = 2&,& (5.9) 

and insertion of the inhomogeneous term g2 = 2i,ub 
into equation (2.25) implies 

cp2~2(~0) - 212u + %?P~o~,@o) = W,@o). 

(5.10) 

Solving the system (5.9-10) and using the recurrence 
(A.ll), one gets 

x(0, t) = x,(1 - t/r), (5.1) 

where the relaxation time z = mx,/b is related to the 
liquidus slope m and to the cooling rate 6. For example, 
this model accurately predicts the liquid phase epi- 
taxial growth kinetics of III-V compounds. Equation 
(5.1) holds for relatively small values of time; it can be 
generalized [27]. In addition to this surface super- 
saturation induced by cooling, fluid mixtures are 
prepared, by chance or by design, with an initial 
uniform concentration x, that may be different from 
the initial value x0 of x,. Dimensionless variables result 
from the obvious time scale r, distance scale (I)T)“~, 
and the definitions (2.6). Thus, 

112 = [3~/8(1 + ~e)lUs(~o)/U&,), (5.11) 

cp2 = PPJO + 3U,(Ao)/4U,(~o)]. (5.12) 

One then inserts these expressions, together with the 
previously computed value of g2, into the repre- 
sentation (2.23). With the aid of formula (B.4), one 
finally obtains 

%(r + 20) = ,421, + (1 + 2~~/3)3U~(~o~/ 

4~,@0)1~&? + ~0W,Uo) 

- do w(G)[U,(~o)/ 

4~&0WpC-- (ul f ~0)2)1, (5.13) 

i.e. a linear combination of U2 and U _ i. Collecting the 
above results, one can write to second order the 
expansions (2.10) for the concentration and growth 
rate 

5 = @/?)“2, A(C) = [CgflC] (#)“2c (5.2) u(Lrl) = Uo(l + 2,) + uz(IJ + n,)t;2, (5.14) 

“MS. 23/4--8 
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c,,f(5)(r/Dp2/C = &5 ’ + A,(. (5.15) 

The coefficients uO, u2, ,$,, and & are given explicitly by 

equations (56 7) (5.11) and (5.13). One notes that the 
zeroth order depends only on the initial supersatu- 

ration, i.e. i,, is a function of the supersaturation ratio 

fJ = a,/(1 + u,) = (x, - x,)/(x, - ~0). (5.16) 

However, the second order clearly shows nonlinear 
terms in the products of the driving forces a(&) and p, 

Here again, it is instructive to compare these results 

with approximate calculations. Under the same as- 
sumptions as those stated at the end of Section 4, one 

finds [26] for the concentration and growth rate 

u(5,rl) = M,(V) + 4&U,(l) (5.17) 

c’,f(S)(r/W’“IC 

= [(x 1 - mv ‘!2],m’ + (2xo/ni’2x,)[. (5.18) 

In this case, the effect of the two driving forces is clearly 
additive. It is also the limiting case 0 -+ 0 under the 

additional proviso x, x x,, as the following calcu- 
lations show. One need only expand to first order in 1,. 
Thus for small supersaturation, equation (5.7) yields 

i, 1 a!&” 2 u,/rr’!2 (5.19) 

and equations (5.667) then become comparable to the 

first terms of equations (5.17-18). Likewise, using 

equations (A.lO) and (A.13) for the expansions of u,,, 
one gets for the second order coefficients (5.11) and 

(5.13) 

(5.20) 

(5.21) 

so that the second order terms of (5.14) and (5.15) are 

comparable to those of (5.17) and (5.18) when & + 0, 
i.e. when the supersaturation 0 is low. 

6. SUMMARY 

This paper has dealt with one-dimensional moving 

boundary problems that occur during mass transport 
processes, and in particular during crystal growth. 
These problems require special attention because the 
boundary conditions at the moving surface are often 
not Dirichlet conditions, and because the surface’s 
equation of motion itself contains the unknown con- 
centrations. One can obtain series solutions in powers 
of the square root of time; these are not similarity 
solutions. The zeroth term, if it exists, is always 
Neumann’s classical solution; it constitutes the only 
nonlinearity. All higher order terms are solutions of 
linear differential equations that have exact solutions. 
Formal recursive solutions are obtained in terms of 

mild generalizations of the iterated error functions. 
These expansions are heuristic and no attempt to 
investigate their convergence has been made. How- 
ever, the formulas are easy to apply, for the problem 

has been reduced to simple ulyehruic manipulations 
that could easily be programmed in a language such as 
SCRATCHPAD [28]. Similar methods have been 

applied to the boundary layer equations of hydrody- 
namics to give the series solutions of Blasius, Howarth, 
Giirtler, Goldstein, and others [29]. However, in that 

area one must compute the various terms numerically. 
The present method was applied to three specific 

examples of interest for crystal growth. The iirt,t 

assumes that the surface concentration always be at 

equilibrium. Then the expansions reduce to their 
zeroth terms, regardless of the number of diffusing 

species. Such problems are mere extensions of 
Neumann’s solution for melting and freezing. The 

second example allows for deviations from equilib- 
rium. At the surface one then has a radiation boundary 
condition, so that the surface concentration is, (I p~+or-i. 

unknown. The expansion coefficients are particularly 
easy to compute because the two main recursions arc 
independent of one another. The third example 
demonstrates the effect of external driving forces that 
constrain the surface concentration’s schedule. Here 

calculations are somewhat more arduous because the 
external forces can interact with internal ones such as 

supersaturation. In both the second and third example 
it was shown how approximate results that essentiall, 

neglect the boundary’s motion can be considered the 
limit oflow supersaturation. This is in accordance with 
similar observations concerning known Stefan proh- 

lems that admit analytic solutions. 
Uniform initial conditions were assumed through- 

out this paper. If x(z,O) is not constant, x0(-) say. then 
11 = Y” - x satisfies the conditions of Section 2 as long 

as .x0 is analytic in the variables (2.5 ). Then one expects 
generalizations of equations (2.12) and (2.15) in which 

the right hand sides will contain additional inhomo- 
geneities due to x0. However. in all cases, the general 
solution (2.23) ought still apply. and Neumann’s 
solution should still constitute the zeroth order. Again. 
the reader may consult Tao’s work [I 21 for advances 

in this direction. Finally, only one-dimensional prob- 
lems in semi-infinite regions were considered. It : 
conceivable that, with ingenuity. similar merhods 
might be devised for slab geometries. and for cylinders. 
spheres, and other quadratic surfaces. 
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APPENDIX A 

Some Properties of the Iterated Error Functions and Related 
Functions 

The recursion 

i” erfc(z) = 
s 

m 
dsi”- ’ erfc(s), (A.1) 

I 

with i-’ erfc(z) = 2x-“’ exp( - z’), defines the nth iterated 
error function. Therefore, i“ erfc(z) coincides with the com- 
plementary error function, and one has the integral 
representation 

i” erfc(z) = 7 * 1” ds(S-Z)“exp(-s’). (A.2) 
J7r.L n 

Integration by parts and differentiation of equation (A.2) 
show that the iterated error functions satisfy the recurrence 
relation 

2(nf l)i”+’ erfc(z) = - 2zi” erfc(z) + in- ’ erfc(z), (A.3) 

and the differential equation 

ti’ + 2zu’ - 2nu = 0. (A.4) 

Relations (A.l-4) hold for all non-negative integer values of n. 
Other useful properties of the iterated error functions may be 
found in [15] and [30]. 

However, their relation to Hermite functions H,(z) is 
generally not recognized. When visa non-negative integer the 
latter reduce to Hermite polynomials; when v is a non- 
positive integer one has the relation 

i” erfc(z) = 271~I’* exp( -z*)H _“- ,(z), (A.5) 

valid for n 2 - 1. Hermite functions satisfy the same 
differential equation, recurrences, and differential relations as 
do the Hermite polynomials. Reference [31] develops the 
theory of these functions. In particular, one has the power 
series representation 

1 
Hv(z) = 2r(-v) )i=o 

g (- 1rrc - Jwl (2z)k, 
(‘4.6) 

and the asymptotic representations 

m (- l)t(--42, 
H,(Z) - (24” ,& k!(2z)2k , b%(z) t -C 3744 (A.7) 

1 arg( - z) 1 < n/4. 

64.8) 
It is convenient to define the functions 

U”(z) = 2x-“*exp(-z2)H_“~1(z) (A.9) 

for arbitrary index v. For integer values of v > -1, they 
coincide with the iterated error functions ; for negative integer 
values v I - 1 they can be expressed in terms of Hermite 
polynomials. Finally, one easily shows that 

v:(z) = - U”_,(Z), (A.lO) 

ZvLl,(t) = - 2zU,_,(z) + U”_,(Z), (A.ll) 

u:’ + 2zu: - 2VU” = 0, (A.12) 

U”(0) = [2”I-(1 + v/2)]-‘, (A.13) 
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be. relations that duplicate those obeyed by the iterated error 
functions. 

Here one derives formulas that allow expansions to be 
carried out to any degree of accuracy. To this end, one 
requires evaluation of the integrals that appear in equations 
(2.23) and (2.25). Since the inhomogeneous term 9. will be 
seen to be a linear combination of L’, functions where m is a 
signed integer less than II, it follows that one must first 
evaluate the integrals 

I’ 
dsU,,(s)U,( I s)exp(s’). (9.1) 

. Cl 
Both U,(s) and L,( -_s) sattsfy equations (A.12), so that the 
wronskian W[C,(s), U,(+_s)) satisfies W’ + 2sW - 2(v - 
p)U,,U, = 0. This differential equation is easily integrated to 
give 

W(U,,(yl. fJ1(+y)lexp(y2) = const. 

+ 2tr - 1) [’ dsc,,(s)C;,( +s)exp(?). (9.2) 
.I 0 

where the constant is just the wronskian’s value at )’ = 0. In 
particular, with equations (A.lO), (A.13). and the duplication 
formula for gamma functions, one gets 

which reduces to equation (2.21 I whet1 t IS a non-negative 
integer. 

Finally, one applies equation (B.2) to the vartous definite 
integrals that appear in equation (2.231. Elementary manipu- 
lations, together with the use of equation (2.20) and the 
cognizance of the asymptotic behaviour (A.7) then leads tc> 
the remarkably simple formula 

This relation is valid for any signed integer values ofm f n: it 
expresses the integral as a linear combination of U-functtons 
of the positive argument r. Since the first non-vanishing 
coefficient ulr must be proportional to such a function, as is its 
derivative, it follows from equations (2.23) and (B.4) that all 
its successors must be a linear combination of U-functions. 

DEVELOPPEMENTS DANS LE TEMPS POUR LA SOLUTION DES I’ROBLEMES 
DE STEFAN MONODIMENSIONNELS DE CROISSANCE DUN CRISTAL 

R&urn& On presente une nouvelle methode de resolution des probltmes de transfert massiquc selon 
Stefan, dans une dimension et dans des regions semi-infinies. Elle repose sur des dtveloppements de la 
distribution de la concentration et la croissance en puissances de t “* Les conditions a la frontiere mobile ne 
sont pas necessairement constantes; elles peuvent etre arbitraires. De telles conditions conduisent souvent a 
des solutions non similaires. Bien que ces problemes ne soient pas lineaires, les coefficients du dtveloppemeat 
satisfont les relations lintaires de recurrence. Ces coefficients resultent de manipulations algebriques simples 
de fonctions ttroitement reliees a des fonctions erreurs ittrees, la methode est appliquee a plusieurs exemples 
de croissance cristalline a partir de solutions sursaturees. Les deux premiers exemples supposent dea 
conditions isothermes ; ils illustrent la difference entre I’tquilibre de surface et la cinetique de surface finie. Le 

troisitme exemple montre des effets dus au refroidissement homogene. 

LGSUNG VON EINDIMENSIONALEN STEFAN-PROBLEMEN DER KRISTALLBILDUNG 
DURCH REIHENENTWICKLUNG NACH DER ZEIT 

Zusammenfassung Es wird eine neue Methode fur die Losung von Stefan-Stoffiibertragungsproblemen in 
einer Dimension und fur halbunendliche Bereiche angegeben. Sie beruht auf Reihenentwicklungen der 
Konzentrationsverteilung und der Wachstumsrate nach Potenzen von I ’ ’ Die Feldbedingungen an dem 
fortschreitenden Rand sind nicht unbedingt konstant, sie konnen willkiirlich sein. Solche Bedingungen 
fiihren After zu nicht-ahnlichen Losungen. Obwohl diese Probleme nicht-linear sind. erfiillen die 
Koeffizienten der Reihen lineare Rekursionsbeziehungen. Diese Koeffizienten ergeben sich aus einfachen 
algebraischen Umformungen von Funktionen, die in engem Zusammenhang zu den iterierten 
Fehlerfunktionen stehen. Die Methode wird fur verschiedene Beispiele von Kristallbildung in iibersattigten 
Liisungen angewendet. Fur die beiden ersten Beispiele werden isotherme Bedingungen angenommen : sie 
veranschaulichen den Unterschied zwischen Oberflachengleichgewicht und endlicher Oberflachenkinetik. 

Das dritte Beispiel zeigt die Einfliisse homogener Abkiihlung. 

PEBIEHMR PA3JlOxEHMEM HO BPEMEHM OfiHOMEPHbIX CTEQAHOBCKMX 7AflAcl 
POCTA KPMCTAJUIOB 

AwoTautm flpennomeu HOBblfi Meroa pemeHan CTe@HOBCKHX 3auaq, CBBSaHHbIX c Macconepeuocow 
B OJHOMepHbtX W nony6ecKoHe9nbIx o6nacTnx. OCHOBaHHbti? Ha pa3JtOmeHHB paCnpeJIeJTeHuK KOtltIeHTpa- 
uuu B CKO~OCTH pocTa KpncTanna no cTeneHflM t “’ Yc~osrin na nepe~emarouteiicn rpaumte ne 
06B3aTenbHo flO:,mHb, 6blTb “OCTOBH”b,MB; OHA MOryT 6btTb npOH3BOJtbHbtMH. ‘tT0 YaCTO npHBOnB’l 
K neaBToMoaeTbnbrM pemeeeshl. HecMoTpn Ha ~0, ‘i~o TaKkie 3anawi ~~BmkoTcn BenuweiinbtMB. Ko3+- 
(t)HLlHeHTbl pa3”ONe”BB y,TOBJteTBOpBtoT JtBHefiHbIM peKyppeHT”btM CoOTHOmeHHRM. 3TH KO’&,B+ 
LrMeHTb, onpenenntorcn C IIOMOLlJbFO IlpOCTblX anre6pamrecxex npeo6paaosauriic (PyHKuRB, pO;lCTBeHHbIX 
@~HK~HIIM omB60~. MeTon nposepen na necKonbKBx npsbrepax pocra ~pecran~roB ri3 nepenacbr- 
urenubtx paCTBopoB. B nepebtx neyx npBMepax npennonaraeTcn nanmme u3oTepMBrecKBx yc,Tormii ; 
kL7,lfOCTpHpyeTC!d pa3nrtWe M%Ki,y PaBHFBeCWZM “a nOBepXHOCTB H KOHWHOti nOBepXHOCTHOil KHHC- 

TUKOii. TpereR “pBMep WLWOCTpHpyeT 3~~eKTbl. Bbt?BaHHb,e 0,lHOpOnHblM OX.naX,?eHMeM. 


